\(\int \frac {\cos (c+d x) \cot ^4(c+d x)}{a+a \sin (c+d x)} \, dx\) [539]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 27, antiderivative size = 64 \[ \int \frac {\cos (c+d x) \cot ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\csc (c+d x)}{a d}+\frac {\csc ^2(c+d x)}{2 a d}-\frac {\csc ^3(c+d x)}{3 a d}+\frac {\log (\sin (c+d x))}{a d} \]

[Out]

csc(d*x+c)/a/d+1/2*csc(d*x+c)^2/a/d-1/3*csc(d*x+c)^3/a/d+ln(sin(d*x+c))/a/d

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {2915, 12, 76} \[ \int \frac {\cos (c+d x) \cot ^4(c+d x)}{a+a \sin (c+d x)} \, dx=-\frac {\csc ^3(c+d x)}{3 a d}+\frac {\csc ^2(c+d x)}{2 a d}+\frac {\csc (c+d x)}{a d}+\frac {\log (\sin (c+d x))}{a d} \]

[In]

Int[(Cos[c + d*x]*Cot[c + d*x]^4)/(a + a*Sin[c + d*x]),x]

[Out]

Csc[c + d*x]/(a*d) + Csc[c + d*x]^2/(2*a*d) - Csc[c + d*x]^3/(3*a*d) + Log[Sin[c + d*x]]/(a*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 76

Int[((d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_))*((e_) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*
x)*(d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && IGtQ[p, 0] && EqQ[b*e + a*f, 0] &&  !(ILtQ[n
 + p + 2, 0] && GtQ[n + 2*p, 0])

Rule 2915

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {a^4 (a-x)^2 (a+x)}{x^4} \, dx,x,a \sin (c+d x)\right )}{a^5 d} \\ & = \frac {\text {Subst}\left (\int \frac {(a-x)^2 (a+x)}{x^4} \, dx,x,a \sin (c+d x)\right )}{a d} \\ & = \frac {\text {Subst}\left (\int \left (\frac {a^3}{x^4}-\frac {a^2}{x^3}-\frac {a}{x^2}+\frac {1}{x}\right ) \, dx,x,a \sin (c+d x)\right )}{a d} \\ & = \frac {\csc (c+d x)}{a d}+\frac {\csc ^2(c+d x)}{2 a d}-\frac {\csc ^3(c+d x)}{3 a d}+\frac {\log (\sin (c+d x))}{a d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.05 (sec) , antiderivative size = 48, normalized size of antiderivative = 0.75 \[ \int \frac {\cos (c+d x) \cot ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {6 \csc (c+d x)+3 \csc ^2(c+d x)-2 \csc ^3(c+d x)+6 \log (\sin (c+d x))}{6 a d} \]

[In]

Integrate[(Cos[c + d*x]*Cot[c + d*x]^4)/(a + a*Sin[c + d*x]),x]

[Out]

(6*Csc[c + d*x] + 3*Csc[c + d*x]^2 - 2*Csc[c + d*x]^3 + 6*Log[Sin[c + d*x]])/(6*a*d)

Maple [A] (verified)

Time = 0.24 (sec) , antiderivative size = 44, normalized size of antiderivative = 0.69

method result size
derivativedivides \(\frac {-\frac {1}{3 \sin \left (d x +c \right )^{3}}+\frac {1}{2 \sin \left (d x +c \right )^{2}}+\ln \left (\sin \left (d x +c \right )\right )+\frac {1}{\sin \left (d x +c \right )}}{d a}\) \(44\)
default \(\frac {-\frac {1}{3 \sin \left (d x +c \right )^{3}}+\frac {1}{2 \sin \left (d x +c \right )^{2}}+\ln \left (\sin \left (d x +c \right )\right )+\frac {1}{\sin \left (d x +c \right )}}{d a}\) \(44\)
parallelrisch \(\frac {-\left (\cot ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\cot ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+9 \cot \left (\frac {d x}{2}+\frac {c}{2}\right )+24 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+9 \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{24 d a}\) \(110\)
risch \(-\frac {i x}{a}-\frac {2 i c}{a d}+\frac {2 i \left (3 \,{\mathrm e}^{5 i \left (d x +c \right )}-2 \,{\mathrm e}^{3 i \left (d x +c \right )}+3 i {\mathrm e}^{4 i \left (d x +c \right )}+3 \,{\mathrm e}^{i \left (d x +c \right )}-3 i {\mathrm e}^{2 i \left (d x +c \right )}\right )}{3 a d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )^{3}}+\frac {\ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{d a}\) \(118\)
norman \(\frac {-\frac {1}{24 a d}+\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{12 d a}+\frac {11 \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d a}+\frac {11 \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d a}+\frac {\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )}{12 d a}-\frac {\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )}{24 d a}+\frac {5 \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d a}+\frac {5 \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{12 d a}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d}-\frac {\ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a d}\) \(221\)

[In]

int(cos(d*x+c)^5*csc(d*x+c)^4/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d/a*(-1/3/sin(d*x+c)^3+1/2/sin(d*x+c)^2+ln(sin(d*x+c))+1/sin(d*x+c))

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.17 \[ \int \frac {\cos (c+d x) \cot ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {6 \, {\left (\cos \left (d x + c\right )^{2} - 1\right )} \log \left (\frac {1}{2} \, \sin \left (d x + c\right )\right ) \sin \left (d x + c\right ) + 6 \, \cos \left (d x + c\right )^{2} - 3 \, \sin \left (d x + c\right ) - 4}{6 \, {\left (a d \cos \left (d x + c\right )^{2} - a d\right )} \sin \left (d x + c\right )} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^4/(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/6*(6*(cos(d*x + c)^2 - 1)*log(1/2*sin(d*x + c))*sin(d*x + c) + 6*cos(d*x + c)^2 - 3*sin(d*x + c) - 4)/((a*d*
cos(d*x + c)^2 - a*d)*sin(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) \cot ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**5*csc(d*x+c)**4/(a+a*sin(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.22 (sec) , antiderivative size = 50, normalized size of antiderivative = 0.78 \[ \int \frac {\cos (c+d x) \cot ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {6 \, \log \left (\sin \left (d x + c\right )\right )}{a} + \frac {6 \, \sin \left (d x + c\right )^{2} + 3 \, \sin \left (d x + c\right ) - 2}{a \sin \left (d x + c\right )^{3}}}{6 \, d} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^4/(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/6*(6*log(sin(d*x + c))/a + (6*sin(d*x + c)^2 + 3*sin(d*x + c) - 2)/(a*sin(d*x + c)^3))/d

Giac [A] (verification not implemented)

none

Time = 0.43 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.97 \[ \int \frac {\cos (c+d x) \cot ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\frac {6 \, \log \left ({\left | \sin \left (d x + c\right ) \right |}\right )}{a} - \frac {11 \, \sin \left (d x + c\right )^{3} - 6 \, \sin \left (d x + c\right )^{2} - 3 \, \sin \left (d x + c\right ) + 2}{a \sin \left (d x + c\right )^{3}}}{6 \, d} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^4/(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/6*(6*log(abs(sin(d*x + c)))/a - (11*sin(d*x + c)^3 - 6*sin(d*x + c)^2 - 3*sin(d*x + c) + 2)/(a*sin(d*x + c)^
3))/d

Mupad [B] (verification not implemented)

Time = 10.14 (sec) , antiderivative size = 138, normalized size of antiderivative = 2.16 \[ \int \frac {\cos (c+d x) \cot ^4(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{8\,a\,d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24\,a\,d}+\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{a\,d}+\frac {3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8\,a\,d}-\frac {\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{a\,d}+\frac {{\mathrm {cot}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-\frac {1}{3}\right )}{8\,a\,d} \]

[In]

int(cos(c + d*x)^5/(sin(c + d*x)^4*(a + a*sin(c + d*x))),x)

[Out]

tan(c/2 + (d*x)/2)^2/(8*a*d) - tan(c/2 + (d*x)/2)^3/(24*a*d) + log(tan(c/2 + (d*x)/2))/(a*d) + (3*tan(c/2 + (d
*x)/2))/(8*a*d) - log(tan(c/2 + (d*x)/2)^2 + 1)/(a*d) + (cot(c/2 + (d*x)/2)^3*(tan(c/2 + (d*x)/2) + 3*tan(c/2
+ (d*x)/2)^2 - 1/3))/(8*a*d)